µÚ¶þÊ®¶þÕÂ22.1.4¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏñºÍÐÔÖÊ£¨2£©µÚÒ»Ìâ´ð°¸
-3£»5
µÚ¶þÊ®¶þÕÂ22.1.4¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏñºÍÐÔÖÊ£¨2£©µÚ¶þÌâ´ð°¸
y=-x2-2x+3
µÚ¶þÊ®¶þÕÂ22.1.4¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏñºÍÐÔÖÊ£¨2£©µÚÈýÌâ´ð°¸
y=x2-2x-3
µÚ¶þÊ®¶þÕÂ22.1.4¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏñºÍÐÔÖÊ£¨2£©µÚËÄÌâ´ð°¸
y=x2/8-x/4+2»òy=-x2/8+3x*4+2
µÚ¶þÊ®¶þÕÂ22.1.4¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏñºÍÐÔÖÊ£¨2£©µÚÎåÌâ´ð°¸
½â£º¡ß¶þ´Îº¯Êýy=-x2+bx+cµÄ¶Ô³ÆÖáΪx=2£¬ÇÒ¾¹ýԵ㣬

¡àb=4£¬c=0£¬
¡ày=-x2+4x
µÚ¶þÊ®¶þÕÂ22.1.4¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏñºÍÐÔÖÊ£¨2£©µÚÁùÌâ´ð°¸
½â£ºÉèÅ×ÎïÏß½âÎöʽΪy=a£¨x+1£©2-1£¬½«£¨1£¬0£©´úÈëµÃ

µÚ¶þÊ®¶þÕÂ22.1.4¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏñºÍÐÔÖÊ£¨2£©µÚÆßÌâ´ð°¸
½â£ºÉèËùÇó¶þ´Îº¯ÊýµÄ½âÎöʽΪy=ax2+bx+c£¬
¡ß¶þ´Îº¯ÊýµÄͼÏñ¾¹ý£¨0£¬4£©£¬£¨1£¬3£©£¬£¨-1£¬4£©Èýµã£¬


±±Ê¦´ó°æ¾ÅÄê¼¶ÉϲáÊýѧ×÷Òµ±¾´ð°¸½Î÷Ê¡
È˽̰æ¾ÅÄê¼¶ÉϲáÓ¢Óï×÷Òµ±¾´ð°¸½Î÷Ê¡
È˽̰æ¾ÅÄê¼¶ÉϲáÊýѧ×÷Òµ±¾´ð°¸½Î÷Ê¡
½Ì¿Æ°æ¾ÅÄê¼¶ÉϲáÎïÀí×÷Òµ±¾´ð°¸½Î÷Ê¡
È˽̰æ¾ÅÄê¼¶ÉϲáÓïÎÄ×÷Òµ±¾´ð°¸½Î÷Ê¡
¾ÅÄê¼¶Éϲữѧ¿Î±¾´ð°¸»¦½Ì°æ
»ª¶«Ê¦´ó°æ¾ÅÄê¼¶ÉϲáÊýѧÊé´ð°¸
È˽̰æ¾ÅÄê¼¶ÉϲữѧÊé´ð°¸
È˽̰æ¾ÅÄê¼¶ÉϲáÎïÀíÊé´ð°¸
È˽̰æ¾ÅÄê¼¶ÉϲáÓ¢ÓïÊé´ð°¸
Õã½Ì°æ¾ÅÄê¼¶ÉÏ²á¿ÆÑ§Êé´ð°¸
»¦¿Æ°æ¾ÅÄê¼¶ÉϲáÊýѧÊé´ð°¸
Õã½Ì°æ¾ÅÄê¼¶ÉϲáÊýѧÊé´ð°¸
È˽̰æ¾ÅÄê¼¶ÉϲáÓïÎÄÊé´ð°¸
±±Ê¦´ó°æ¾ÅÄê¼¶ÉϲáÊýѧÊé´ð°¸
¾ÅÄ꼶ϲáÊýѧÊé´ð°¸È˽̰æ
¾ÅÄ꼶ϲáÓïÎÄ¿ÎÊ±ÌØÑµ´ð°¸È˽̰æ
¾ÅÄê¼¶ÉϲáÓïÎĿοÎÁ·´ð°¸Ëս̰æ
Ëս̰æ¾ÅÄ꼶ϲáÓïÎĿα¾´ð°¸
¾ÅÄ꼶ϲáÓ¢Óïбà»ù´¡ÑµÁ·´ð°¸ÍâÑаæ
ÉϽ̰æ¾ÅÄê¼¶Éϲữѧ²¹³äϰÌâ´ð°¸
¾ÅÄ꼶ϲáÀúÊ·¿ÎʱÁ·´ð°¸È˽̰æ
¾ÅÄ꼶ϲáÓïÎÄпγÌ×ÔÖ÷ѧϰÓë²âÆÀ´ð°¸È˽̰æ
¾ÅÄ꼶ϲáÀúÊ·ÓëÉç»á×÷Òµ±¾´ð°¸È˽̰æ